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Abstract

Fish population dynamics is used to develop a consistent model
skeleton for larval fishes predation on nauplii. The problem
is exemplified by considering simple environments comprising
one size group of Atlanto Scandianherring (Clupea harengus) lar
vae and one size group of Artemia salina nauplii.

A data set on the exact number of nauplii before and after small
scale predation experiments is presented and a technique for
automatie nauplii counting with replacement is introduced.

The need for combined analyses of feeding, stomach content and
digestion is emphasized and a preliminary queueing approac~ is
presented.
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1. INTRODUCTION.

Food consumption by larval fish is difficult to study directly
in t~marine environment.

We may at the very best obtain in situ data that gives
adequate information on the food available (species,abundance,
size and age distribution of zooplankton) ,and the stomach
content of predators(species,age,size) at the moment of
capture.

It is,however,not possible to utilize such assesment oriented
data without a knowledge on the underlying biological processes
or mechanisms.This is probably why quite a bit of research
effort has been devoted to experimental studies of food
consumption and digestion during the last decade~

In this study we attempt to deal with basic principles of food
consumption by fish larvae and predation mor.talities of nauplii.
'We concentrates on the simplest possible environment : one type
of predator eating one type of prey.

A good deal ~f the study concerns the theoretical modelling,
the design of the experiments and the interpretation of the
results are then based on the models.
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2. PROBLEM SPECIFICATION AND HYPOTHETICAL MODELS.

( 1 )= Z(t)Na(t)

2.1. PREDATION MORTALITY OR FEEDING RATE.

In fish population dynamics (see for example Beverton and Holt
1957 Andersen and Ursin 1977 and Beyer and Sparre, 1980), "
the reduction in stock size of a year-class is described by the
differential equation.

dNa(t)

dt

where Na is the population size and the instantaneous coefficient
of total mortality, Z, usually is partitioned into mortalities
due to the various causes that characterizes the population and
the environment it is occupying.

Eq (1) represents the starting point for this study where interest
is focused on the quantification of predation mortality in a
simple environment of volume V comprising only one type of prey
(nauplii.of the same species, age, prec6ndition and size) and one
type of predator (fish larvae of the same species, age, precondition
and size).

Since there is no IIfishing ll in operation the individual prey is
exposed only to natural mortality:

z(t) = Ml(t) + M2(t)·Nb (t) (2)

Nb denotes the number of live predators each of which contributes
wtth M2 to the total instantaneous coefficient of prey mor
tality. All other possible causes of mortality than predation
are incorporated in.the residual mortality MI.

Eq(2) represents a basis for modelling prey mortality. Any quan
titative relationship that expresses M2 as a function of the pasL
and!or present state of the prey!predator system defines a model
of predation-mortality. The M2-mortalities, however, are caused
by predators and the problem is here called food consumption.

Let R(t) denote the accumulated number of prey ingested by an in
dividual predator and let (forgetting .about differential problems)
the feeding rate·be defined as

( 3 )

The fundamental requirement to consistency is that the total rate
of feeding always equals the total rate of predation mortality,
i . e: us ing Eqs. (1) and (2),

or

( 4 )

The partial coefficient of predation mortality M2 equals the
fraction of the prey population that is consumed by the indi
vidual predator in one unit of time.
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A model of food consumption by predators determines a model of
predation. This,of course, is not surprising but still quite
useful to keep in mind. We shall consider two simple models each
of which may be applicable to feeding conditions at relative
low prey densities.

First, however, a simplification is introduced. Due to the re
quirement of constant prey characteristics we choose to study
the prey-predator system in a relative short period of time and
assume:

(i) zero residual mortality (i.e. MI = 0)

(ii) constant predator population size, Nb.

That is

2.1.1. FEEDING RATE PROPORTIONAL TO PREY DENSITY (EXPONENTIAL MODEL)
e.

( 5 )

Assumihg that the foraging behavior of a hungry predator remains
the same when it is grazing down the food supply we get in a first
approximation

( 6 )

where

• (7)

is the prey density and s is a constant which we refer to as the
effective searching rate. The corresponding predation model is
obtained from Eq. (4):

M2(t) "" s/V ( 8 )

Thus the coefficient of predation mortality is constant. The size
of the prey population at time t is obtained from Eq (5):

( 9 )

If the prey population size is known at the start and at the end
of the experiment the estimate of M2 becomes

,..
H2 (10 )

from which the estimate of the feeding rate is obtained:

" 1\ ....f(t) = M2Na (t) = sqa(t) (11 )
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2.1.2. CONSTANT FEE DING RATE (LINEAR MODEL)

If the feeding rate is constant,' f(t) = f o , we get

5.

(12)

The coefficient of predation mortality increases as .the prey den
sity decreases because the predator must increase its rate of
foraging in order to maintain a constant feeding rate when the
available food is getting scarce.

Eq. (5) becomes

or

•
Thus the estimate ofthe feeding rate is

Na(o)- Na (T)

T~

2.1.3. MODEL TESTING.

(13)

(14)

Due to for example the sampling procedure it is often more conve
nient to express the grazing models in terms of pr.ey density than
population size. The exponential model, Eq. (9), takes the form

qa(t) = qa(o)exp(-NbM2t )
= qa(o)exp(-qbst ); qb = Nb/V

and the linear model, ~Eq (13), is

(15)

(16)

One way to obtain data to test the models is to take prey
aliquots from 'the experimental tank (predator-prey system) at re
gularly intervals of time. Assuming this sampling procedure
neitper changes the prey density (i.e. sampling with replacement)
or disturbs the predator-prey s~stem in other ways, the aliquot
counts may be used to estimate the actual decline in the prey
density during the predation experiment.

2.1.4ö STOCHASTICITY

Since this study as most others laboratory studies deals with
small populations the effect of (demographie) stochasticity cannot
be neglected from the outset. We do not intend to present the
complete stochastic formulations of the food consumption hypothe
ses here because of the preliminary nature of the experiments
carried out. We restriet attention to some major differences
between 'the stochastic and the equivalent (previous considered)
deterministic approaches.
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Figure 1: Transition intensity diagrams for stochastic
processes gover~ing reductions in the prey population .
size (state varlable) due to predation by the Nb preda
tors.
A: Constant mortality coefficient M2.
B: Constant average feeding rate, f , of the individu-
al predator. 0

In the stochastic formulations of Eq. (1) a precise account of the
prey population size is kept. Fig. lA depicts the situation in
the case of a constant coefficient of predation, NbM2. Whenever
one of the Nb predators eats a prey, the size of the population
(i.e. the state variable)decreases by one. State zero, of course,
is a trapping state (extinct population). In this model each of
the N~(O) live prey in the initial population has an exponential
lifetlme distribution with mean 1I~bM2). The probability of still
being alive at time t isthus exp(-Nb M2t) for each of the Na(O)
prey. And, since. it is assumed that the life-times are stochasti
cally independent (i.e. the individual prey live and die as though
its siblings did not exist), the number of live prey at time' t
follows a Binomial distribution, Bin (Na(O), exp(-NbM2t)), i.e.

(17)

x = 0,1,2, .•.• , Na(O);

The expected population size and the maximum likelihood estimator
of M2 are identical to the results obtained from the equivalent
deterministic model, i.e. Eqs (9) and (10), respectively.
The coefficient of variation is

exp(Nb M2t)-1

N (0)
a

(18)
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Fig IB depicts the intensity diagram in case of a constant predato
ry feeding rate. The elapse times between consequtive prey ingestions
(by any of the predators) are exponentially distributed with a
constant mean of l/~oNb). This is a simple Poissonprocess of rate
f Nb and the total number of prey eaten in the per iod of time t

-tRus followsa Poisson distribution with mean foNbt. We here assume
a negligible probability of termination (i.e. last prey eaten at or " -
before time t).

prfNa(o) -Na(t) = xl

x = 0,1,2, ••• , Na (0 )

(19)

•
The expected population size and the maximum likelihood estimator of
f o are identical to the results obtained from the equivalent determi
nistic model, i.e. Eqs. (13)and (14), respectively.
The coefficient of variation is

IfoNbtl
CVAR(Na(t» = V (20)

Na(O) - foNbt

2.2 •. FEEDING~ STOMACH CONTE NT AND DIGESTION.

The basis fordescribing fish larvae as queueing systems has been
given in FISH I & 11 (Beyer, 1976). In brief, prey organisms
("customers") arrive individually at the larval stomach (llwaiting
room") where they stay until digestion ("service") can take place
in the intestine. The queuing system is completely specified by
the arrival process., the queue-discipline and the service mecha
nisms.

If the prey density is constant, -qa' then the ~imple feeding rate
models considered in the previoussection both imply that the
fish larva encounter and eat prey in a Poisson process at rate

(21)

Once a prey is engulfed by the mouth rtpasses rapidly to the pos
terior end of the gut where digestion takes place (Blaxter, 1965)

Let us assume that digestion starts right away,i.e. newcoming
nauplii do not wait in the gut (in contrast to the single server
queueing cpnsidered in Fish I&II).Let d denote the digestion rate
for a nallplius of weight Wa,i.e.

1 (22)
d = Ti

where h is the time to complete digestion.

It is askllmed that the digestion time of a nauplius of a given size
-is independent of the amount of food in the gut. -

Figure 2 gives the transition intensity diagram for this queueing
system.lf thc gut contains,say,two nauplii at time zero then the
next event is cither that a third prey is eaten in which case "the
process jumps to state 3",or that one of the,nauplii is fully
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Figure 2 Transition intensity diagramfor the number nauplii
in the stornach of a herring larva assuming nauplii
are eaten in a Poisson process at a rate f,and that
digestion starts at once at rate d.

digested in which case theltprocess jumps to state llt.The number of
nauplii in the gut,G,thus changes as time elapses.

We expect that G ultimately willfrluctuate about a mean value of

fg= ..:.. = f·h
d

(23)

because this situation repusents a balance between feeding rate
Cf) andtotal digestion rate{d·g).

The process is said to reach statistical equilibrium and the gut
content will follow a Poisson distribution with mean g,i.e.

x

Pr -t G=x1 = :! e-g ,x=o,1,2,···· (24)

This is a weIl known result in queueing theory and we omit the proof.
It"may be noted that this Poisson distribution is valid for the
queueing system under any obscure distribution of individual dige
stion times.

That is,as long asindividual prey are eaten in a Poisson process
at a rate f,then the distribution of the gut content (in statistical
equilibrium) is given by Eq(24) if the individual prey organisms
are digested independently of each other with a average digestion
time of d.Since we have related digestion time to prey size,the
result implies that independent of changes in the shape of the size
distribution of ingested preythe gut content is always Poisson
distributed in the same way if the average preydigestion time
remains constant.

If the average digestion time,h,is known ,the model may be used
to estimate the feeding rate from the mean gut content,i.e.
according to Eq(23),

f=
g

h (25)



.,

•

9 •

3. MATERIAL AND METHODS.

The experiments were carried out in May-June 1980 at the Danish
Laboratory of Larval Fish Research, in Charlottenlund.
Grey, cylindrical PVC 'tanks, with a volume of 5 literwere used.

·A seawater supply of 0.1 liter/min and air blow (1 liter/min)
·on the watersurface created turbulence and prevented patchiness of
thefood organisms. The outlet tube was covered.by a 100 pm plank
ton net. The salinity was 26 0/00, the temperatur~~aintainedat
looC, and a constant lighting of 1000 lux~~aintained at the water
surface by two cool-white fluorescent tubes.

Food organisms were 1-3 days old Artemia salina nauplii grown to
a length of 720-750 pm on a diet of dried Chlorella-powder.

At the start of an experiment a group of Atlanto-Scandian herring
larvae was transferred to the tank which immediately before was
~upplied with the nauplii.

The prefeeding conditions of ~the larvae were approximately the same
as in the experiments. The larvae were selected as homogeneous as
possible by sorting by eye and a group consisted of 2-9 individuals,
the actual number being determined according to expected grazing
rates.

Two experimental series were conducted the first of which with
focus on the effect of predation in continuous ti~e.

A home-madeglass tube (the transor) with a small hole (400 pm)
at its apex was placed in the tank at a.fixed position. The water
was pumped through the aperture of the transor at a rate of
800 ml/hr, passed throughthe peristaltic pump
and returned. to the tank.
A generator maintained a constant current through the aperture of
the transor between two platinum electrodes. When the individual
nauplii passed through this opening the conductivity of the sea .
water dropped and the resultant changes in voltage was amplified.
and counted. A minicomputer was programmed to read total counts
(on line) for aperiod of 30 minutes and restart the counter every
35 minutes. The individual sampIe size was thus 400 ml.

Before the larvae were transferred to the tank, Artemia were counted
in a prolonged per iod of time in order to estimate both the mor
tality of other causes than predation and the start density that
was offered to the larvae.

The second series of experiments was designed to provide infor
mation onrations over an extended per iod of time.
In these experiments the total number of Artemia was counted at .
the start and at the end of each experiment. The seeding was done
with 1000 Artemla using the electronic counter, i.e. astart prey
density of 200 Artemia/liter.

After an experimental period of about 22 hours the larvae were
immediately measured on length (maximal length) and the±r stomach
contents were examined using the transparancy of the gut.
Finally the larvae were dryweighted after a 9hort per iod in which
their·guts were emptied and a drying period of 24 hours at 55~C.
The remaining Artemia within the tank were filt~redandcounted.
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4. RESULTS AND DISCUSSION.

4.1. EXPONENTIAL OR LINEAR MODEL OR ?

Fig. 3 depiets the deeline in Artemia density due to grazing by
four herring larvae. The density level before the experiment does
not show a downward 'trend indieating that the assumption of zero
residual mortality eannot be rejeeted •
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Figure 3.

Estimates of the Artemia density in the tank of 5 liter based
on automatie eounting in half-hour .intervals (sampie size 400 ml.)
The 4 herring larvae were transferred to the tank at time 22 hrs.
Nonlinear least 'square fit to the exponential model is shown.

The mean density is 416 A/liter. Note the eyelie fluetuations whieh
perhaps are due to turbulanee. At any rate, the variations about the
mean level are greater then what should be expeeted from a random
distribution of nauplii (i.e. Poisson distributed sampie counts).

The exponential model with 4~M2~:ö62~hr~~,Eq (15), from time 22 hrs.
onwards gives a reasonable good fit to the deereasing density of
Artemia. However, the variation about the exponential model eannot
be explained by the effeet of demographie stoehastieity. Let us for
example eonsider the situation at time 52 hrs., i.e. 30 hrs. after
the start of the grazing experiment. with ~~ instantaneous eoeffieient
of predation mortality of 4·M2 or 0.062 hr the expeeted prey density
at t=30 hr is given by Eq. (15) as 416exp(-O.062 . 30) or 65 A/liter.
The eoeffieient of variation, however, is only 5 % (Eq. 18). Thus,
a 95 % confidence interval is approximately 59-72 A/liter and several
of the points around SOhrs on Fig. 3 fa11

c
outside this interval.
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Note that the prey density at the start of the experiment has been
assumed to be 416 A/liter. We do not really know. Forgetting about
the cyclic trends, the data for 0-22 hrs. show a standard deviation
of about 50 A/liter. This may explain part of the variability in
densities during the grazing experiment. However, we do not want
to go into an analysis of compound distributions b~sed on these
preliminary experiments.

A couple of similar grazing experiments (which are not presented
here) with bigger larvae seem to indicate that an exponential
decrease in Artemia density takes place until about 200 A/liter.
Below this density level grazing is higher than is expected from
the exponential model, indicating that bigger larvae increase their
rate of foraging it low prey densities. However, further experiments
are needed before a shift from exponential to linear grazing can be
established as a general pattern .

. Aeeording to the fish larvalliterature feeding rates are not
surprisingly found to inerease asymptotieally with increasing
prey densities. This of course is in aeeordanee with the exponential
model beeause we are not 'coneerned here with satiation problems.
However, few authors have dealt experimentally:with-densities of
100 nauplii/liter or less whieh seem to be the order of magnitude
'in the sea.

The experiment given by Fig. 3 represents the very first run of the
automatie eounting system. We clearly need to use the equipment with
many replieates on both small-seale and large~seale systems. In this
way wehope to be able to destinguish variation in fish larvae
feeding from other sources of variation. The result is problably
that the simple exponential model in its stoehastie version cannot
explain the variability observed among individual predators.

4.2 FEEDING·RATES ESTIMATION UNDER A GIVEN MODEL'

Data from the predation experiments are given in Table 1. Under the
assumption of a eonstant mortality eoeffieient of prey during the
experiment, M2 is calculated for different larval sizes (Eg. 10).
The feeding rates at.a given prey density is then ealeulated using
Eq. (11). As an example Fig. 4 shows feeding rates a~ 100 A/liter
against body-weight •

...=! 15 I- EXPONENTIAL MODEL 0::'- . ...:Il:)r<t: '-0
0- r<t:::r:
00:: - 30 '-
r-i::> or<t:

0 0>
::r: r-i0::

8,- 10 I- r<t:
r<t:r<t: .. 8...:l
r.LI> r<t:'-
80:: - 20 r.LI~
r<t:r<t: 8::r:
o::~ . r<t:tJ.

o::~tJr<t:
ZH 5

... tJ~
H::8 I- z>O
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~~ . 00
r.LIO:: ..... .~ tJ1
Ii<~ .... . r.LI ~Ii<_

I I I I

0 0.5 1.0 1.5 2.0
LARVAL DRYWEIGHT (mg)

Figure 4 ..
Estimated feeding rates at 100 a/liter for herring larvae of
0.4 - 2.0 mg body-weightbased on the exponential model,i.e.
plot of the M2 eolumn iri table 1 multiplied by 500 against
body-weight.
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On the other hand, assuming that the feeding rate is constant during
the experiment the last column in Table 1 is obtained from Eg. (14).
These feeding rate calculations are plotted on Fig. 5 ..

15 - LINEAR MODEL 0::
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0 0.5 1.0 1.5 2.0
LARVAL DRYWEIGHT (mg)

Figure 5.

Estimated feeding rates for herring larvae of 0.4. - 2.0 mg
body-weight based on the linear model.,i.e. plot of the f o
column in Table 1 against body~weight.

The smaller variabil{ty in feeding rate based on the linear model
(Fig. 5) than in the feeding rate based on the exponential model
(Fig. 4) cannot be used to reject the exponential model. In the
exponential model, the compuation of M2 is very sensitive to the
observed variations in the number of live ~auplii at the end of
those experiments that involved few big larvae.

Few estimates of the feeding rate of larval herring are reported
in the litterature. On basis of food passage in the gut RosenthaI
and Hempel (1970) estimates feeding rates for herring larvae of
13-14 mm in length to 4-5 A/hour.Our estimate at this larveal
size is approximately 3 A/hour. But note again that the feeding
rate is proportional to the prey density in case of the exponential
model.

Fig. 4 and Fig. 5 both indicate a linear relationship between
larval weight and the feeding rate until the larva reach a weight
of about 1.0 mg whereafter the increase in feeding rate seems to
level off.

This picture with the rate of increae levelling off at the bigger
larval sizes is also found~in experiments with other species (ex.
Houde and Schekter, 1980 a). An increasing effect of the tank size
can not be rejected, however, and further experiments incorporating
this factor have to be done.
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4.3 STOMACH CONTENTS

Fig. G depicts the frequency of stomach contents found at the
termination of the predation experiments (solid line). The stomaehs
show a mean of 3.39 nauplii and a variance of 8.47. The expected
Poisson frequency distribution, Eq. (24), obtained from the simple
queueing model is also shown (shaded area). The variance of this
distribution, however, is only 3.39 (equal to the me~n).

OBSERVATIONS n = 130

LARVAL LENGTH - 15.1x = mm
S = 0.9 mm

ARTEMIA LENGTH 680 - 760 um

20 DENSITY - 78 AlLARTEMIA x =
S = 15 AlL

..-..

. ~ 15

5

o 1 2 3 4 5 6 7 8 9 10 1112 13 1415
STOMACH CONTENT (NUMBER OF ARTEMIA)

Figure 6.

Histogram of stomach contents for the herring larvae' after the
grazing experiments (heavy line) and the fitted Poisson frequency
distribution (shaded areal.

The unexpected high frequency of empty stomaehs cou1d be attributed
to gut emptying of certain larvae that probab1y were stressed before
they were caught. This pattern of a high frequency of empty stomaehs
is also reported by Houde and Schekter (1980 b) for 1ined sole at
prey concentration of 100 naup1ii/liter.

Not much information on digestion timesfor larval herring seems to
be available. Rosenthal and Hempel' s (1970) work indicate thatthe
digestion time of one Artemia nauplius is in the order of 1 hr. with
d=1 hr. in Bajov's formu1a, Eq. (25), the feeding rate is estimated
~o 3.4 nauplii/hr. The average feeding rate according to Table 1 is
about 3.5 nauplii/hr. far l~rvae of approxi~ately 15 mm of iength.
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The queueing model described in this paper has been chosen with the
purpose of emphasizing the importance of combining hypotheses on
feeding rates, stomach contents and digestion into one consistent
approach. An app!icable model must incorporate feed back mechanisms
such as satiation controls. It should also be noted that models
cannot be tested exclusively on stomach distributions because
'different formulations governing food consumption'and digestion
may lead to the same type of distributions. We need more proces
oriented knowledge
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Table 1 ~ Predation experiment.
(mean wei~ Wa(T) is grazed de. Na (0) Artemia nauplii = 2.5 pg) to Na(T) by Nb(T) larvae of a mea~.

length and weight of Lb(T) and Wb (T) . Volume or tank ( V) is 5 liter. The coefficient of mortality
and thefeeding rate is calculated on basis of Eq (10 )and Eq (14 ) respectively. •,

Exp. no Time of Artemia Larvae Coefficient Feeding

exp. number number 'length dry weight of mortality rate,..
"T Na(O) Na(T) sampie sampie Wb(T) M2 10mean Lb(T) SD

hours mm mm rng. hour-1 Artemia /hour
1 22.67 1000 441 8 14.9 0.7 0.41 .00451 3.08
2 22.83 994 587 7 14.1 0.8 0.36 .00330 2.55
3 22.75 998 353 9 14.7 0.6 0.39 .00508 3.15
4 23.00 1001 421 8 14,.3 0.6 0.35 .00471 3.15
5 22.67 .1013 482 7 15.6 0.5 0.64 .00468 3.35
6 22.83 1000 360 8 15.7 1.0 0.61 .00559 3.50
7 23.20 999 442 7 14.9 0.7 0.47 .00502 3.43
8 22.50 991 385 7 15.2 0.6 0.55 .00600 3.85
9 22.67 1001 352 7 14.8 0.9 0.52 .00659 4.09

10 22.83 1052 385 7 15.0 1.0 0.46 .00629 4.17
11 23.66 1002 339 6 16.2 1.3 0.68 .00763 4.67
12 .23.83 1041 459 6 15.6 1.0 0.61 .00573 4.07
13 24.00 1003 203 6 16.1 1.4 0.78 .0111 5.56
14 24.16 1001 120 8 15.8 1.5 0.75 .0110 4.56
15 22.58 1003 518 5 15.3 1.0 0.53 .00585 4.30
16 22.75 1002 374 6 14.9 1.2 0.50 .00722 4.60
17 22.92 1032 282 6 15.8 0.3 0.57 .00943 5.45
18 23.08 1036 299 7 16.0 0.7 0.64 .00769· 4.56
19 22.42 .1052 141 5 16.9 1.4 0.89 .0179 8.13
20 22.92 1043 74 6 16.0 1.4 0.73 .0192 7.05
21 23.08 999 64 8 16.4 1.3 0.87 .0149 5.06
22 22.67 993 248 6 15.8 1.3 0.66 .0102 5.48
·23 22.00 1013 127 5 16.7 0.3 0.78 .0189 8.05
24 22.00 1006 127 4 17.9 0.7 1.03 .0235 9.99
25 23.75 1010 219 4 18.1 0.5 1.05 .0161 8.33
26 22.75 1005 297 5 16.8 1.0 0.81 .0107 6.22
27 22.75 1007 128 3 21.1 0.9 2.07 .0302 12.9
28 23.58 1004 262 3 20.2. 1.1 1.74 .0190 10.5
29 17.67 1021 511 3 19.7 0.8 1.55 .0131 9.62
30 17.83 1008 465 3 19.2 0.7 1.39 .0145 10.2
31 18.00 1025 604 2 21.2 0.6 2.11 .0147 11.7 t-'

32 18.17 1006 612 2 19.6 0.0 1.53 .0137 10.8 U1

33 18.33 1004 388 3 19.4 0.7 1.46 .0173 11.2
34 18.50 1012 321 4 17.5 1.1 0.96 .0155 9.33


